20*15=20x*20x-x^2

Simple and best practice solution for 20*15=20x*20x-x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20*15=20x*20x-x^2 equation:



20*15=20x*20x-x^2
We move all terms to the left:
20*15-(20x*20x-x^2)=0
We add all the numbers together, and all the variables
-(20x*20x-x^2)+300=0
We get rid of parentheses
x^2-20x*20x+300=0
Wy multiply elements
x^2-400x^2+300=0
We add all the numbers together, and all the variables
-399x^2+300=0
a = -399; b = 0; c = +300;
Δ = b2-4ac
Δ = 02-4·(-399)·300
Δ = 478800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{478800}=\sqrt{3600*133}=\sqrt{3600}*\sqrt{133}=60\sqrt{133}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{133}}{2*-399}=\frac{0-60\sqrt{133}}{-798} =-\frac{60\sqrt{133}}{-798} =-\frac{10\sqrt{133}}{-133} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{133}}{2*-399}=\frac{0+60\sqrt{133}}{-798} =\frac{60\sqrt{133}}{-798} =\frac{10\sqrt{133}}{-133} $

See similar equations:

| -1/2x=5/3 | | 16=p/32 | | 8x-2=5(x+3) | | 5=20-x-x(20-x)/x | | 23-4z=3(z-4) | | 16.4+2y=8y+2 | | X⁴-4x²=0 | | 2w+-9=9w+19 | | 300=40x-x^2 | | 6v+13=3v+34 | | 4u+22=7u-8 | | 12=3(h-2) | | 5x-4x=2-3 | | −7x−4−2=8 | | 20=52-4f | | 7(6y+2)=−8 | | 42y+14=-8 | | 3c-2(3-2c)=3c-4c=-1c | | 6(x+8)=4(x-7) | | 3b+5(2b+9)-19=0 | | x+24=450 | | z/8-8=12 | | x-24=450 | | 16a-8(3a+4)=-4(a-5)+12(3a-9) | | -12(x-5)=3(x+0) | | s*6+40=190 | | 66-x^2+x=10  | | 3000=x+x÷4+x-150 | | 5-3x=-6(x=2) | | 39=18-5x | | y+3/7=1/5 | | 5x-3=2x-2/3 |

Equations solver categories